Glucagon-Like Peptide-1 Analog Liraglutide Protects against Diabetic Cardiomyopathy by the Inhibition of the Endoplasmic Reticulum Stress Pathway

نویسندگان

  • Jieyu Liu
  • Yu Liu
  • Li Chen
  • Yuehui Wang
  • Junqi Li
چکیده

Aim. This study aimed to investigate whether the glucagon-like peptide-1 analog liraglutide (LIRA) can protect against diabetic cardiomyopathy and explore the related mechanism. Methods. Rats were divided into 6 groups: a nondiabetic group, diabetic cardiomyopathy rats without LIRA treatment, diabetic cardiomyopathy rats with LIRA treatment (with high-, medium-, and low-dose, resp.), and diabetic cardiomyopathy rats treated with insulin. Cardiac function was examined by echocardiography before and after treatment. The histopathology of the heart was examined with H&E staining. The mRNA levels of XBP1, ATF4, and TRAF2 were analyzed by RT-PCR, and the expression of glucose-regulated protein 78 (Grp78), enhancer-binding protein homologous protein (CHOP), caspase-3, and caspase-12 was detected by western blot. Results. LIRA strongly improved cardiac function from both echocardiographic and histopathologic analyses, but insulin only partly increased cardiac function by improving FS and LVPW values. LIRA treatment can significantly decrease the expression of XBP1, ATF4, and TRAF2 (P < 0.01). LIRA also significantly downregulates the expression of Grp78, caspase-3 (P < 0.01), CHOP, and caspase-12 (P < 0.05). Conclusions. LIRA can protect against diabetic cardiomyopathy by inactivating the ER stress pathway. The improvement in cardiac function by LIRA is independent of glucose control.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A glucagon-like peptide-1 analog reverses the molecular pathology and cardiac dysfunction of a mouse model of obesity.

BACKGROUND Cardiac consequences of obesity include inflammation, hypertrophy, and compromised energy metabolism. Glucagon-like peptide-1 is an incretin hormone capable of cytoprotective actions that reduces inflammation and endoplasmic reticulum stress in other tissues. Here we examine the cardiac effects of the glucagon-like peptide-1 analog liraglutide in a model of obesity, independent of ch...

متن کامل

The Sodium-Glucose Co-Transporter 2 Inhibitor, Empagliflozin, Protects against Diabetic Cardiomyopathy by Inhibition of the Endoplasmic Reticulum Stress Pathway.

BACKGROUND/AIMS This study aimed to determine whether or not the sodium-glucose co-transporter 2 inhibitor, empagliflozin (EMPA), can protect against diabetic cardiomyopathy (DCM) and to elucidate the related mechanism. METHODS Rats were divided into the following four groups: a non-diabetic group; diabetic cardiomyopathy rats without EMPA treatment; and diabetic cardiomyopathy rats with EMPA...

متن کامل

Liraglutide protects cardiac function in diabetic rats through the PPARα pathway

Increasing evidence shows that diabetes causes cardiac dysfunction. We hypothesized that a glucagon-like peptide-1 analogue, liraglutide, would attenuate cardiac dysfunction in diabetic rats. Twenty-four Sprague Dawley (SD) rats were divided into 2 groups fed either a normal diet (normal, n = 6) or a high-fat diet (HFD, n = 18) for 4 weeks. Then, the HFD rats were injected with streptozotocin (...

متن کامل

Metformin and liraglutide ameliorate high glucose-induced oxidative stress via inhibition of PKC-NAD(P)H oxidase pathway in human aortic endothelial cells.

OBJECTIVE Metformin and glucagon like peptide-1 (GLP-1) prevent diabetic cardiovascular complications and atherosclerosis. However, the direct effects on hyperglycemia-induced oxidative stress in endothelial cells are not fully understood. Thus, we aimed to evaluate the effects of metformin and a GLP-1 analog, liraglutide on high glucose-induced oxidative stress. METHODS Production of reactiv...

متن کامل

Exendin-4 attenuates high glucose-induced cardiomyocyte apoptosis via inhibition of endoplasmic reticulum stress and activation of SERCA2a.

Hyperglycemia-induced cardiomyocyte apoptosis contributes to diabetic cardiomyopathy. Glucagon-like peptide-1 (Glp1) receptor (Glp1r) agonists improve cardiac function and survival in response to ischemia-reperfusion and myocardial infarction. The present studies assessed whether Glp1r activation exerts direct cardioprotective effects in response to hyperglycemia. Treatment with the Glp1r agoni...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 2013  شماره 

صفحات  -

تاریخ انتشار 2013